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Solitary waves on a vorticity layer 
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Contour dynamics methods are used to determine the shapes and speeds of planar, 
steadily propagating, solitary waves on a two-dimensional layer of uniform vorticity 
adjacent to a free-slip plane wall in an, otherwise irrotational, unbounded 
incompressible fluid, as well as of axisymmetric solitary waves propagating on a tube 
of azimuthal vorticity proportional to the distance to the symmetry axis. A continuous 
family of solutions of the Euler equations is found in each case. In the planar case they 
range from small-amplitude solitons of the Benjamin-Ono equation to large-amplitude 
waves that tend to one member of the touching pair of counter-rotating vortices of 
Pierrehumbert (1980), but this convergence is slow in two small regions near the tips 
of the waves, for which an asymptotic analysis is presented. In the axisymmetric case, 
the small-amplitude waves obey a Korteweg-de Vries equation with small logarithmic 
corrections, and the large-amplitude waves tend to Hill’s spherical vortex. 

1. Introduction 
In this paper we describe permanent solitary waves propagating on a two- 

dimensional layer of uniform vorticity attached to a wall. These waves were first 
described in Jimenez & Orlandi (1993), where a vorticity layer of finite length was used 
to model the generation of concentrated streamwise vortices in a turbulent channel. It 
had been observed that layers of concentrated streamwise vorticity form near the wall 
in turbulent channels, and that they later roll into streamwise vortices (Sendstad 1992). 
Jimenez & Orlandi (1993) was an attempt to model this process by studying the 
behaviour of a two-dimensional inviscid vorticity layer near a wall. It was argued that 
this model should approximate the behaviour of a turbulent channel in planes 
perpendicular to the mean flow velocity. 

It was found, by direct numerical integration of the initial value problem, that the 
layer disintegrates into discrete vortices which later propagate along the wall without 
apparent change of shape. Because of the effect of the image vorticity reflected by the 
wall, these isolated vortices are equivalent to vortex dipoles, and correspond to the 
touching vortex dipoles obtained by Pierrehumbert (1980). Jimknez & Orlandi also 
derived an integro-differential equation to model the behaviour of the layer for 
perturbations of long wavelength, whose solutions were also shown numerically to 
break into series of apparent solitary waves. An interesting property of the latter 
equation was that it seemed to possess solitary solutions formed by ‘bumps’ of 
vorticity riding on top of a uniform vortex layer. Although many types of waves of 
permanent form are known to exist on uniform vorticity layers, solitary waves have not 
been documented up to now, except for Pierrehumbert’s touching dipole, which can be 
considered as a solitary wave whose thickness tends to zero at infinity. 

In this paper we study the existence of families of solitary waves on vortex layers 
adjacent to walls, such that their heights do not vanish at infinity. We restrict ourselves 
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to layers of uniform vorticity, which allows us to use the formulation of contour 
dynamics. The computations in Jimenez & Orlandi (1993) were not restricted to 
uniform vorticity profiles, but the extra generality is not expected to be essential. The 
possible relation of these structures to near-wall turbulence will not be pursued here. 
The reader is referred to Orlandi & JimCnez (1991) and Jimenez & Orlandi (1993) for 
a discussion of those aspects. 

Contour dynamics computations of time-evolving spatially periodic waves on a layer 
of uniform vorticity were carried out by Pullin (1981), motivated by their resemblance 
to the large-scale coherent motions in the outer part of constant-pressure turbulent 
boundary layers. The shapes and speeds of permanent periodic waves were computed 
by Broadbent & Moore (1985), which showed the existence of a finite limiting 
amplitude, comparable to the wavelength, characterized by sharp re-entrant corners in 
the wave troughs with an angle of 90". Their results, as well as those of Pullin & 
Grimshaw (1983) for a related problem, strongly suggest that solitary waves may be 
found in the limit of long wavelengths. Pullin & Grimshaw (1988) computed the shape 
of solitary gravity waves in a flow with uniform shear, showing the transition from 
limiting profiles with a 120" corner at the crest, for small and moderate shear, to 
bubble-capped waves of probably unlimited amplitude for larger shear. Teles da Silva 
& Peregrine (1988) determined the shapes of large-amplitude periodic waves in this 
same configuration, and their results show a similar trend. 

Perry & Fairlie (1975) used a similar model to mimic the recirculation bubble in a 
separating and reattaching turbulent boundary layer on the flat wall of a channel 
whose other wall was shaped to generate the necessary pressure distribution. They 
solved the inviscid equations by means of an electrical analogue technique, and found 
good agreement with their own wind tunnel experiments. 

In $2 of this paper, we describe permanent solitary waves propagating on a two- 
dimensional layer of uniform vorticity. For small amplitudes, they approach solitons 
of the Benjamin-Ono equation, which arises as a limit of the equation proposed in 
Jimenez & Orlandi (1993). Waves of larger amplitude are described using contour 
dynamics. They tend to the Pierrehumbert dipole in the limit in which their amplitude 
is much larger than the thickness of the vorticity layer at infinity, and the nature of that 
limit is explored. 

Solitary waves on a tube of azimuthal vorticity are described in $3, and their 
analogies and discrepancies with the planar waves are pointed out. It is conjectured 
that they may be related to the structures observed in turbulent jets. In the small- 
amplitude limit they tend to solitary waves of a slightly modified Korteweg-de Vries 
equation, and this connection might be related to the almost soliton-like behaviour 
observed experimentally in the interaction of coaxial vortex rings. In the large- 
amplitude limit they tend to Hill's spherical vortices. 

The stability of the solutions is discussed briefly in $4, especially as it relates to the 
effect of weak viscosity and a no-slip wall. It is argued that the waves most probably 
separate the boundary layer and provoke vorticity ejections similar to those known to 
occur in the interaction of compact vortices with walls (Orlandi 1990). 



Solitary waves on a vorticity layer 305 

2. Two-dimensional waves 
We consider the propagation of two-dimensional waves on a layer of uniform 

vorticity adjacent to a slip wall in the absence of viscosity. Taking as units the values 
of the vorticity in the layer and its height, the unperturbed velocity field is 

O < y < l  

Y > 1 ,  uo = {A,-Y, vo = 0,  

where y is the distance to the wall. The wave is characterized by the shape of the 
interface between rotational and irrotational fluid, y =Ax, t) .  

The analysis of the evolution of infinitesimal waves, depending on x and t through 
a factor exp [ik(x - ct)], leads to the dispersion relation (Rayleigh 1887) 

which becomes c = 1 - Ikl +gk2 + . . . in the weakly dispersive limit of long wavelengths 
(k  % 1). 

For waves of small but finite amplitude, y = 1 +eF(x, t )  with < 1 and F = 0(1), a 
balance between the opposing tendencies of dispersion and nonlinearity is possible if 
k, = 0 ( e ) ,  k ,  being a characteristic wavenumber. Then, to leading order in an 
asymptotic expansion for e % 1 ,  the waves obey the Benjamin-Ono equation (Benjamin 
1967; Stern & Pratt 1985), 

where 5 = E ( X -  t) ,  7 = 29, and the integral in the Hilbert’s transform should be 
understood as a principal value. This equation has soliton solutions (Ablowitz & 
Clarkson 1991), which, in the original variables, are 

4.5 
A x - c t )  = 1 +  

1 + €2(X - C t y  ’ (4) 

with c = 1 + €  = 1 + + [ f ( O ) -  11. (5 )  

We will now continue numerically this family of solitary waves for non-small values of 
the amplitude using contour dynamics. Guided by (4), we restrict our search to 
symmetric waves. In a reference frame moving with the unknown velocity of the wave, 
5 = x - ct, we impose - 6) =f([), and take AO) - 1 as a measure of the amplitude. 
The stream function describing the steady flow around the wave (u = ?,kU, v = -$,, 
$ = 0 at y = 0) is of the form 

@(& Y )  = @o(Y) - CY + @ b ( L  Y ) ,  (6)  

where 
y ( l - & ) ,  0 < y < 1 

Y > l  @ d Y )  = 
2, 

(7) 

is the stream function of the unperturbed flow. The perturbation can be split into 

@b(& Y )  = $+(& u) + $-(6, Y ) ,  (8) 
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with 

1Y TY' 
6-5' 

and 

where $+ is the contribution to the stream function of the vorticity accumulated 
between y = 1 and y =A[), and @- that of its image relative to the wall. 

For a solitary wave, with A[ )  --f 1 for &+ f co, the condition that the boundary 
of the rotational region be a streamline is 

I+(&, y') = In [(t - gl2 + ( y T y ' )2~+ + y /  + (5- c) tan- 

$",A01 = g - c, (10) 

which provides an integral equation determining JTt) and c as a function of JTO). 
In our numerical solution, (10) was imposed at N +  1 discrete points Ei,, i = 0, ..., N ,  

with 5, = 0, and the integrals in (9) were approximated in terms of the values of f lo  
at these points using the trapeze rule. This yields N +  1 equations for the unknowns, 
c andfi =A&), i = 1, . . . , N .  The spacing between adjacent points was chosen manually 
to provide some extra resolution at points of large curvature, but it was seldom very 
far from uniform. The length of the computational domain, tN, was taken large enough 
forJT&) - 1 to be negligible. The small contributions to the integrals from the regions 
beyond +EN were approximated by taking A') = 1 +dfN- 1)(&/Q2 and 
expanding the integrands for [' large. This behaviour ofJTQ is associated with the 
vertical velocity u N y /E3  far ahead of a vortex dipole, and is consistent with (4). 

The discrete equations were solved iteratively using a simplified diagonal version of 
Newton's method introduced by Pierrehumbert (1980). The first equation (( 10) at 
&, = 0) was used to compute c, and the others were iterated in the form 

where the superscript denotes the iteration number and $(n)([,y) is the value of $ 
evaluated using f'") in the integrals of $+. The integral giving a$+/ay has a singular 
integrand at 6' = ti and y' =A&), whichwas handled by separating the singular part 
and integrating it analytically over the interval ci-l < [ < using a linear 
approximation for AQ. 

The numerical continuation was initiated fromA0)- 1 = 0.1, using the solution (4) 
of the Benjamin-Ono equation as an initial guess. The value of fl0) - 1 was then 
increased by small steps, using the previously converged solutions as initial guesses. 
The length of the solitary wave was observed to first decrease (in accordance with the 
asymptotic results forfl0)- 1 small) and then increase with increasingJT0). The value 
of tN was changed along the computation to accommodate these tendencies. Typically, 
N was about 200 and &/flO) x 8, except for very small values of f l0) - 1. 

Values of the propagation speed and of the area C of the rotational region above the 
level y = 1, are given in figure 1, normalized withA0) andf(0)2. The dashed curve at 
the left of this figure corresponds to equation (5) ,  whereas the area tends to 47t for 
JT0)- 1, which agrees with the solution (4) of the Benjamin-Ono equation. Both the 
speed and the area increase monotonically with the amplitude of the wave, although 
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FIGURE 1. Normalized propagation speed and area of the rotational region above the level of the 
unperturbed vorticity layer for a planar wave, as functions of its amplitude. The dashed curve to the 
left of the figure is equation (5) ,  and the dashed lines to the right are the asymptotic Pierrehumbert's 
results for large amplitude. 
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FIGURE 2. Shapes of the planar waves for six different amplitudes. The dashed curve gives the 

shape of Pierrehumbert's vortex. 

their normalized values decrease. The horizontal lines at the right of the figure are 
c/flO) = 0.26 and C/flO)' = 2.51, corresponding to the speed and area of the limiting 
touching member of Pierrehumbert's (1980) family of pairs of counter-rotating 
vortices. One vortex of the dipole corresponds to our solitary wave, while the other is 
provided by the image vorticity on the other side of the slip wall. The present results 
tend asymptotically to that limit as JTO) increases and the uniform vortex layer 
extending to infinity is overwhelmed by the vorticity in the wave. This tendency is also 
reflected in figure 2, which displays the wave shapes for several amplitudes; the dashed 
line is the limiting Pierrehumbert solution for a half-height equal to 70. 
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FIGURE 3. Normalized excesses of impulse and energy of a planar wave as functions of its 
amplitude. The dashed lines are the asymptotic results for Pierrehumbert's vortex. 

Figure 3 shows the excesses of the [-component of the impulse AZ and of the kinetic 
energy AT of the waves above the values of the unperturbed flow. The quantities 
themselves are infinite, but the excesses are finite, and are given by 

Note that the infinite contribution to the energy excess due to the circulation of the 
wave is cancelled by the opposite circulation of its image relative to the wall. In the 
second expression, d T has been reduced to a line integral through integration by parts 
and the use of Green's identities, and a+/ay is evaluated at the boundary of the 
rotational region. The excesses of impulse and energy increase with increasing 
amplitude from the common value 2n, for fz << 1, to the asymptotic Pierrehumbert's 
values AZ = 0.516f(0)3 and AT = 0.20JTO)4 for large amplitudes (dashed lines in figure 
3) .  

Pierrehumbert's vortex is not retrieved uniformly, however, in the limit of large 
amplitudes. The extent of the rotational region is finite in Pierrehumbert's solution 
and, as proved by Saffman & Tanveer (1982), its boundary meets the symmetry plane 
(y = 0) at right angles, although with infinite curvature (see also Wu, Overman & 
Zabusky 1984), whereas in our case a layer of vorticity extends to infinity ahead and 
behind the vortex, and the interface tends asymptotically to y = 1. Far from the vortex, 
this layer behaves in a passive way, since the translation velocity of the vortex, OMO)], 
is much larger than the velocity difference across the layer, which is O( 1). The same is 
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true over most of the periphery of the vortex. The flow velocity is OMO)], and the 
vorticity coming from infinity occupies a layer whose thickness is 0(1), inducing 
velocities which are small compared to the induction of the bulk of the vortex. 
However, there are small regions of size Olf(O)];, near the front and back tips of the 
vortex, where the velocity induced by the vorticity coming from the layer at infinity 
becomes comparable with that induced by the rest of the vortex. It is in these regions 
that the shape and velocity field of the present solution tend very slowly to those of 
Pierrehumbert. 

We discuss now the structure of the flow in the region near the leading tip of the 
vortex. The flow around the rear is analogous. Note that, up to logarithms, the 
magnitude of the velocity in the Saffman & Tanveer (1982) solution for the 
Pierrehumbert vortex decreases linearly to zero near the tip, which is a stagnation 
point, q = 0()6-3.34flO)l) (see (11) and (12) below). The height of the rotational strip 
coming from infinity increases in inverse proportion to this velocity, asf(O)/q, and the 
velocities induced by the vorticity contained in the strip increase proportionally to its 
height. Hence, the two velocities become comparable when q = O[flO)];, and the 
incoming vorticity, which by then has accumulated in a non-slender region of size 
OMO)];, around the tip of the vortex, begins to play a role in the local dynamics. 

Let us call [ f l O ) ] ~  = /3 % 1, and define polar coordinates (r,O) centred at 
6 = 3.34p2, y = 0, which would be the leading tip of a touching Pierrehumbert pair 
whose half-height was p2 (see figure 4, where the boundary of Pierrehumbert's vortex 
is represented by the dashed line, and the solid line represents the boundary of the 
present vortex). The stream function in the potential and rotational regions, and $2, 

and the vortex boundary 6 = Ob(r), are given for the Pierrehumbert dipole, at Y < /I2, 
by equation (1)-(3) of Saffman & Tanveer (1982), which can be rewritten as 

where z = reie, a is a real constant (E -0.13 according to Turfus (1993), who also 
computed some further terms of the expansions (11)-(13)), and the branch cut of the 
logarithm is taken along the negative <-axis. 

The first deviation of the present vortex from the shape (13) is due to the non-zero 
value of the stream function on the boundary of the rotational region. While in 
Pierrehumbert's case the stream function vanishes both at the wall and at the boundary 
of the vortex, here it is only zero at the wall, and equals -p2U++ (with 
U = c /p2  = 0.26) on the boundary. Using this condition, (1 1) and (12) yield the 
corrected shape 

Thus, the inverse-logarithm decay of 8 - i ~  near the tip of Pierrehumbert's vortex 
changes to an algebraic decay for r = 0(/3). This expansion is valid for r < p2 and 
lOb-;7cl 4 1, as long as the value of the stream function at the boundary, which is 
O(j3'), remains small compared to the characteristic value of the stream functions at 
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FIGURE 4. Sketch of the region near the leading tip of a planar wave of very large amplitude. 

comparable distances from the tip. According to (11) and (12), both values become 
comparable for R = r / r ,  = 0(1), with - r: In ( r , /p2)  = P2, which defines the limit of an 
inner region that has to be treated separately. Note that r, z P/(lnP); 4 P, at least 
formally, and that the term in (14) proportional to -P2 / r2  is dominant over the one 
proportional to in in the inner end of the intermediate region. 

In this inner region the dominant contribution to the stream function is still the 
stagnation point flow induced by the rest of the vortex, which is given by the common 
0v2) leading term of the outer solutions (11) and (12), while the contribution of the 
local vortical fluid to the stream function is only O(r2) = O(r,2). The inner expansions 
for the stream functions are therefore of the form 

where v;&=o, v ;K=-1 ,  (17a, 6) 
- and V: is the Laplacian in the inner variables (R, 8). The asymptotic forms of K and 
lCr2 for R % 1, are 

where Z = z/r,. Here (1 8 a) and (1 8 c) are the forms of the outer solutions (1 1) and (12) 
rewritten in terms of R and 8. The different behaviour of & to the left and to the right 
of the inner region reflects the fact that the effect of the incoming vorticity is important 
to this order for the flow on the left, but not on the right, over the passive tail. 
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Finally, the inner expansion of the boundary of the vortex, R = Rb(@ is of the form 

where R is written here as a function of 8 on the boundary because the alternative 
representation 8 = &(R) leads to a multi-valued function (see figure 4). The boundary 
is defined by the conditions $? = $2 = - pz U+ + and = $20. Inserting (1 9) into (1 5 )  
and (1 6), applying these conditions, and separating like-order terms of the expansions, 
we find 

and 
R,(B) Rl(8) sin 8 - 

+$i[R,(8), 81 = 0, i = 1,2, 
n 

Note that the leading term of the expansion of (14) for r /P  4 1 coincides with that of 
(20) for 8 7 in. This can be easily verified writing r = r, R, decomposing the logarithm 
in (14) and using the definition of rc, and expanding the sine in (20). At the other limit, 
r / P  B 1, (14) tends to (13), providing a connecting expansion valid in the range 
rc 4 r 4 p2. Note also that no intermediate region of r = OV) is required to the right 
of the inner region, at least to the order of the present computation. There, the 
behaviour Ob - - /3znU/r21n(r/p2) ,  obtained by setting $, in (11) equal to -p2U for 
8 4 1, remains valid for any r, g r < P2, and is continued by the streamline @l = -p2U 
of the outer Pierrehumbert’s flow, beyond the range of validity of (1 1). 

Equations (17a, _ _  b), (18a-c), and (21 a-c), along with the conditions = 0 at 8 = 0 
and n, determine 1cC1, $z, and 8,. Contrary to the original problem, this is not a free 
boundary problem. The conditions (21 a-c) imply the continuity of the & and of their 
first derivatives at the line R = R,(O), which is already known from (20). The two 
functions and are the unique solution of a standard boundary value problem, 
and R,(B) is computed from (21a) or (21b) only after the & are determined. In 
principle, the same procedure can be applied to the higher-order terms of the expansion 
(which contains further logarithms and their iterates in a far from trivial ordering) and 
a formal test of consistency of the asymptotic structure can thereby be obtained. This 
is probably more important than the practical use of the asymptotic expansion to 
evaluate the solution near the tip, because the expansion is hampered in this respect by 
the presence of logarithms. 

3. Axisymmetric waves 
Calculations analogous to those of the previous section can be carried out for 

axisymmetric solitary waves propagating on a vortical tube with azimuthal vorticity 
confined to a cylindrical region in an otherwise irrotational fluid without swirl. We 
assume that the magnitude of the vorticity is proportional to the distance to the 
symmetry axis. This property is maintained by the dynamics of the inviscid fluid. We 
note, however, that many of the results corresponding to small-amplitude waves hold, 
with minor changes, for other vorticity distributions, both in this and in the two- 
dimensional case (see Jimenez & Orlandi 1993). 
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Taking the radius of the unperturbed rotational region and the maximum vorticity 
as units, the unperturbed flow is 

where o, u, and $ are respectively the azimuthal vorticity, the axial (x) velocity, and 
the Stokes stream function, defined by u = $Jr ,  v = -$ ,JY,  $ = 0 at r = 0. 

The dispersion relation for infinitesimal axisymmetric waves propagating in this 
medium is 

(23) 
1 

c = - I4 G(lkl) 1 TIo(lklT) dT7 
0 

where KO and I, are the modified Bessel functions of order zero. In the limit of long 
waves, (23) reduces to c = + $ (: In Ikl+ y -$) k2 + . . ., where y = 0.5772.. . is Euler's 
constant . 

A balance of dispersion and nonlinearity for small-amplitude waves occurs now for 
k, = O(E;) (up to logarithms), where, as before, E =f(O) - 1 is the amplitude of the 
wave. Writing the shape of the boundary in the form r = 1 +eF(c,~), where c= e'( 1x-- it) and T = &t, the equation giving P'(Q T )  for E < 1 can be easily found to be 

1 a3 m I F,+~(- ln(~&)-y++)F hlIKI~(K,T)eiKYdK +FFC= 0, (24) 

where Pis  the Fourier transform of F. Equation (24) was obtained by Leibovich (1970) 
in the context of weakly nonlinear waves propagating in rotating fluids. Leibovich & 
Randall (1972) found numerically that (24) has solitary wave solutions which, when 
-In$ % 1, differ very little from the solitons of the KdV equation, to which (24) 
reduces, after appropriate rescaling, in the limit e + 0. The propagation speed of these 
waves, written in the original variables, is 

KC 4apj1-a  

-In U O )  - 11) 

and the volume of the rotational region with r > 1 is 

As for the two-dimensional case, we proceed now to extend the solitary wave solutions 
of (24) to non-small amplitudes using contour dynamics. For this purpose, the Stokes 
stream function in a reference frame moving with the wave (6 = x - c t )  is written as 

(27) 

where, again, $b is the contribution of the extra vorticity concentrated in the wave. It 
can be expressed as a volume integral extended to the toriodal region enclosed between 
the surface of the wave, r =At), and the cylinder r = 1, and Shariff, Leonard & 
Ferziger (1989) showed that it can be transformed into a line integral over the contour 
of a meridional cross-section of the torus. In our notation: 

$(6, r, = $O([, r, -icy' + $b(6, r),  
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FIGURE 5. Normalized propagation speed and volume of the rotational region 
unperturbed vortical tube for an axisymmetric wave as functions of its amplitude. The 
are the asymptotic values corresponding to the Hill vortex. 

outside the 
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where 
A 2  
B B  

K(rn), Z2 = -I,--(A+B)fE(m), Z3 = 
2 

( A  + B); 
Il = ~ 

m = 2B/(A+ B), A = ( t - 5 / ) 2 + r 2 - r ’ 2 ,  B = 2rr’; 

K(m) and E(m) are the complete elliptic integrals of the first and second kind, 
respectively, and m is their modulus. In the first integral of (28) r’ =A&), whereas 
r’ = 1 in the expressions for the Is appearing in the second integral. 

As before, we look for symmetric waves with a maximum at 6 = 0, and takeflo) - 1 
as a measure of the amplitude. The condition 

imposed at N +  1 points, c,, = 0 to tN, provides N +  1 equations for the unknowns 
fi =A&), i = 1, . . ., N ,  and c. These equations are discretized and solved by the same 
iterative scheme used before, which involves the value of (a$/ar),,, fi,. The contribution 
of $b to this derivative is (Shariff et al. 1989) 

$[&fl5 11 = li - f C ,  (30) 

The integrand of (28) is regular, while that of (31) has a logarithmic singularity at 
c = & and r’ =Att) (in (30) at 6 = 6%). The singular part of this integrand is isolated 
and integrated analytically over the two intervals adjacent to = 6% using a linear 
approximation forflt ). The asymptotic expressionfl‘) = 1 + Cf, - 1) lg,/LJ3 is used in 
the integrals for > lN.  

The propagation speed and the volume of the rotational region outside r = 1 are 
represented in figure 5 as functions offlo). As can be seen, the speed tends to $ and the 
volume tends to zero for fl0) + 1, in accordance with (25) and (26). The dashed lines 
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FIGURE 6. Shapes of the axisymmetric waves for five different amplitudes. The dashed curve is the 
streamline of a Hill vortex that tends to r = 1 far from the vortex. 

at the right of the figure are the speed and volume of Hill's spherical vortex : C / ~ T O ) ~  = & 
and V/f10)3 = $n, to which the present results tend for f (0)  large. The shapes of the 
waves for several values of f (0)  are given in figure 6. 

Comparison of figures 1 and 5 shows that the scaled velocity and area (or volume) 
of the waves tend to their large-amplitude limits more rapidly in the axisymmetric case 
than in the planar case, and the same is true of the shapes of the waves (specially near 
the tips). This is connected with the more passive role of the vorticity of the incoming 
fluid in the axisymmetric case when the wave amplitude increases, so that, for a given 
(large) amplitude, these waves are closer to Hill spherical vortices that the planar waves 
are to Pierrehumbert vortices. An estimate of the effect of this vorticity in comparison 
with that of the vorticity accumulated in the wave is given at the end of this section. 

The expressions for the excesses of axial impulse and energy are, after some 
manipulation, 

with a$/& evaluated at the boundary of the rotational region. These quantities are 
represented in figure 7. As for the two-dimensional case, both increase monotonically 
with the amplitude of the wave, going from zero when f ( O ) +  1 to the asymptotic 
behaviour AI = (47~/15)f(O)~ and AT = (8n/315)JTO)' (corresponding to Hill's vortex) 
for large amplitudes. 

The shape of the wave for f (0)  + co tends fairly rapidly to a streamline of the flow 
around a Hill vortex of radius f(0). As for the two-dimensional case, we restrict 
ourselves to the analysis of the leading tip of the vortex. The velocity of the incoming 
fluid with respect to the stationary wave, which is O[f(0)Z] away from the vortex, 
decreases near the stagnation point as q - f ( O )  I[-f(O)l, so that the radius of the 
incoming vortical tube increases as [ f(0)2/q] i .  At the same time, the vorticity in the tube 
is stretched to o - r and the velocity induced by it increases as q1 - o r  - f(O)'/q. These 
estimates hold until the incoming vortical fluid reaches a distance to the stagnation 
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FIGURE 7. Normalized impulse and energy of an axisymmetric wave as functions of its amplitude. 
The dashed lines are the asymptotic values corresponding to the Hill vortex. 

point which is comparable with its own radius, at which point the cylindrical 
approximation cannot be used any more, the tube splits into an annulus, and its 
thickness starts to decrease. It is easy to see that the maximum induced velocity occur 
at this point, where 1&-JTO)l - f (O) ; .  The induced velocity there is q1 -JTO)g, while the 
velocity generated by the bulk of the wave is larger, q -JTO)i. As a consequence, the 
incoming vorticity plays a passive role everywhere, and the boundary of the vortex 
tends to the streamline @ = -JT0)2/15 of the flow around a Hill vortex. The dashed line 
in figure 6 represents this streamline forJTO) = 15. The agreement with the computed 
boundary is already good for this moderate value of JTO), and becomes better as JTO) 
increases. 

4. Discussion 
The axisymmetric waves of small enough amplitude are most probably stable, since 

they a very close to solitons of the KdV equation (Leibovich & Randall 1972). Waves 
of large enough amplitude must be unstable, since they tend to a Hill vortex, which is 
known to be unstable (Bliss 1973; Moffatt & Moore 1978; Pozrikidis 1986). Therefore, 
at least one critical amplitude must exist at which the waves change stability. The 
instability of Hill’s vortex leads to the ejection of vorticity from the rear of the vortex 
if the initial perturbation is prolate, and to the ingestion of irrotational fluid if the 
perturbation is oblate. It would be of some interest to find how these processes are 
modified by the presence of the tube of vortical flow, and to see whether the short-wave 
undulations of the vortex surface predicted by Bliss (1973) and Shariff et al. (1989) also 
appear in this case. 

The planar waves of small amplitude are also solitons (see e.g. Ablowitz & Clarkson 
1991). Less is known about the stability of the touching pair of counter-rotating 
vortices, but it is generally supposed to be stable (see comments in Saffman 1993 and 
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Saffman & Szeto 1980). If this is so, the solitary waves of $2 might be stable for all 
amplitudes. 

It is interesting to note that the finite waves that we have described always contain 
a recirculation bubble adjacent to the wall (or to the axis). In the weak planar case, the 
velocity at the wall relative to the wave is given asymptotically by 

where F is the amplitude parameterf(0) - 1. This velocity vanishes at ( = .\/3/s, and 
reverses direction between those two stagnation points. The streamline connecting 
them defines a recirculation bubble that increases in size and intensity as the waves 
become stronger and the stagnation points move towards the tips of the Pierrehumbert 
vortex. The recirculation region was noted by Teles da Silva & Peregrine (1988) for the 
high shear limit of their waves and is a common feature of many strong vorticity waves. 

Although the analysis in this paper is inviscid, the effect of viscosity when the waves 
move along a no-slip wall merits some comment. The velocity distribution in equation 
(32) is the same as that generated by a point vortex moving at some distance from a 
wall under its own induction. The boundary layer generated by that flow was studied 
by Doligalski & Walker (1984), who concluded that it always separates a little 
downstream from the pressure minimum located underneath the vortex. Since the 
boundary-layer behaviour depends only on the velocity distribution along its edge, 
their conclusions remain valid here, and hold for all wave amplitudes. The somewhat 
counterintuitive conclusion that an arbitrarily small Benjamin-Ono soliton will 
separate the boundary layer is explained because its small amplitude, F ,  is compensated 
by its long wavelength, O(~/F) .  The nature of the separation, in the point-vortex case, 
is that some of the vorticity is ejected from the boundary layer. A similar phenomenon 
was observed by JimCnez (1 990) underneath the finite-amplitude Tollmien-Schlichting 
waves in a two-dimensional channel. In that case the boundary layer separates near the 
rear stagnation point of the wave, forming a thin vortex layer which wraps around the 
main vortex. The process is not particularly violent and is even steady with respect to 
the wave at sufficiently small Reynolds numbers. Doligalski & Walker (1984) suggest 
that this ejection process might be related to the bursting phenomenon in turbulent 
boundary layers. In our conceptual model, in which the waves would correspond to 
streamwise vortices, the separated layers would form vorticity ‘walls ’ oriented parallel 
to the stream. Such wrapped shear layers have been documented in turbulent channels 
in Jimbnez & Moin (1991). 

Although this discussion holds strictly only for the velocity distribution (32), 
generated by weak waves, it can be checked numerically that the pressure gradients 
induced by strong waves are even more unfavourable than in the weak case. 

The results of this paper might also be used to discuss the viscous decay of freely 
propagating laminar vortex pairs (or rings). If the Reynolds number based on the half- 
height of the pair ( H )  and on its propagation velocity ( U )  is large, a diffusion layer of 
characteristic thickness 6 = O(H/Rei)  appears on the periphery and near the symmetry 
axis of the vortex pair, as the vorticity diffuses away from the rotational region or gets 
cancelled by vorticity of the opposite sign. Some fraction of this vorticity would be left 
behind the vortices, giving rise to a wake. This would be analogous to the infinite 
vorticity layer (or tube) considered above, which would now only exist on the back of 
the pair, whereas the flow in the other side would resemble that of Pierrehumbert’s or 
Hill’s solutions. In this analogy, the relative height of the vortex, f ( O ) ,  would be a 
quantity of order Re; % 1 with respect to the wake, but the structure of the corner 

c 
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region at the rear of the vortex would be more complex than the one discussed in $2 
because, although the viscosity does not play a direct dynamical role in this region, the 
vorticity (or w/r in the axisymmetric case) coming from the diffusion layer is not 
uniform. 

The thickness and distribution of this layer depends on how much mass is lost to the 
wake together with the vorticity. If a sizeable fraction of the diffusion layer is lost in 
this way, the vorticity in the core (or W/Y) might remain essentially constant throughout 
the decay. In this case, the rate of mass loss would be of order U6 in the planar 
case (resp. UH6 in the axisymmetric case), leading to dH/dt = O[(vo)k] (resp. 
dH/dt = O[(dH) ; ] ) ,  where v is the kinematic viscosity, w is the vorticity in the 
interior of the vortex (resp. d = w/Y), and where use has been made of the estimate 
U = O(wH) [resp. U = O ( d H 2 ) ] .  These results imply a finite lifetime for the vortex 
pair, of the order of Rek eddy turnover times. 

On the other hand the vortex pair might entrain most of the diffusion layer, 
including fluid that was originally irrotational, as it actually happens in the vortex ring. 
This would be specially true if the loss of total head of the outer fluid through friction 
is enough to prevent it from reaching the rear stagnation point. The decay process 
would then be more complex, involving the sharing of the available vorticity by the 
ever-increasing amount of fluid in the vortex, and no simple estimate is possible in the 
absence of more detailed computations or experiments (see Maxworthy 1972,1974 and 
Shariff & Leonard 1992 for a discussion of the decay of a vortex ring). At first sight, 
the newly entrained fluid would orbit in an outer region around the rotational core, 
which would split into two disconnected parts (or become a torus in the axisymmetric 
case). This outer region has some vorticity, and the possibility of a continued 
entrainment depends on it. This would leads to a very slow decay, for the viscous 
diffusion would have to extend to a considerable part of the vortex. Which of these 
possibilities are realized, how large is the diffusion layer, and what is its structure, are 
issues that cannot be decided without further analysis. 

5 .  Conclusions 
A family of solitary waves propagating on a layer of uniform vorticity adjacent to 

a slip wall in an otherwise stagnant fluid have been bound by a combination of 
perturbation methods, for small-amplitude waves, and contour dynamics for larger 
amplitudes. These waves are concentrations of vorticity behaving as counter-rotating 
dipoles under the influence of their images relative to the wall, and correspond to the 
structures observed in numerical simulations of a related initial value problem in 
JimCnez & Orlandi (1993). Their propagation speed, area, and excesses of impulse and 
kinetic energy relative to the unperturbed flow, have been computed as functions of the 
amplitude. An asymptotic analysis is presented for very strong waves, which tend 
almost everywhere to one of the partners of the touching pair of counter-rotating 
vortices computed by Pierrehumbert (1980). Weak wave approximate solitons of the 
Benjamin-Ono equation. Permanent periodic waves in a vorticity layer had been 
described previously by Broadbent & Moore (1985), and it is almost certain that our 
solitary waves correspond to the long-wave limit of their solutions. 

It is argued, by analogy to the flow induced by a point vortex, that these waves 
separate the boundary layer induced by them over a no-slip wall, most probably 
resulting in the ejection of a concentrated vortex layer into the flow. 

A similar family of axisymmetric solitary waves is also found for a tube of azimuthal 
vorticity immersed in a fluid at rest. These waves range from solitons of the KdV 
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equation, for very small amplitudes, to the Hill’s spherical vortex for amplitudes large 
compared to the radius of the vorticity tube. 
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